Guy Tremblay and Anne Pons

200711468 A &

P

Contents

° 1. INTRODUCTION
* 2. SOFTWARE DESIGN CONCEPT
* 3. SOFTWARE STRUCTURE AND ARCHITECTURE

* 4. SOFTWARE DESIGN QUALITY ANALYSIS AND
EVALUATION

* 5. SOFTWARE DESIGN NOTATIONS AND
DOCUMENTATION

* 6. SOFTWARE DESIGN STRATEGIES AND METHOD
e 7. CONCLUSION

e

1. INTORODUCTION

* “Design”®]| t gt IEEES] 7 &
- the process of defining the architecture, components,
interfaces, and other characteristics of a system or

component.

- the result of [that] process.

1. INTORODUCTION

* Viewed as a process
- Software design< 422 E 9] 7} 9] life-cycle
activity©] tt.

* More precisely
- software design-- 22 3Z E ¢J| o] 2] architecture 2}
interface S & $HY.

OFTWARE DESIGN CONCEPT
2.1. General design Concepts
o YuiA ?l 3 9

- desi IIT: A A E st Esoltt

SR o] 22 S g A Ba e gk

34 0}7: 25 0] B 5 design< o} T},

———
E———

F"T\AITAD

2. SOFTWARE DESIG
2.1. General design Concepts

¢ Design problem=- AHIA 0 F A 7}X| EH O E &
Aol o 2 W 71 FAlol o 2] 71 7hs
5

o we}X] wicked problem©] Ay

F*r\ A~/ EY BN A

2. SOFTWARE DESIG
2.1. General design Concepts

¢ Desion ™| 21Uk 0l A ool Mol eair]] v ol b

N CONCEP

- goals

- constraints

- alternatives

- representations
- solutions

!4! SOFTWARE DESIGN CONCEPT

2.2. Software Design Context

* Software development life cycle

- Software requirements analysis.

- Software coding and testing
(also known as software construction)

- Software integration and qualification testing

m\ro [\

WARE DESIGN CO
2.2. Software Design Context

* 2 main type of Life cycle model
- Linear model
ex) waterfall model

- Incremental models
ex) the spiral model, the iterative development
approach

o Software architecture®] YU HF4 2l 4 9]
- The internal structure

* Oxford & o] AHA
structure : the way in which something is constructed
or organized

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.1. Architectural Structures and Views

* Kruchtens’s “4+1 view model”
1. The local view
- describes how the functional requirements are satisfied.

2. The implementation view
- describes how the design is broken down into implementation units.

3. The process view
- addresses issues related to concurrency and distribution.

4. The deployment view
- shows how the runtime units and components are distributed onto
the various processing nodes

5. The use-case view
- which consists of a small number of use cases, ties together the other
views, illustrating how the all work together

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.1. Architectural Structures and Views

* Other sets of view that classified into three categories,
called viewtypes:
1. Module viewtype
- describe the units of implementation.
2. Component-and-connector viewtype
- the units of execution, that is, elements having a
run-time presence.
3. Allocation viewtype
- The relationships between a system and its
development and execution environment.

3. SOFTWARE STRUCTURE AND ARCHITECTURE
3.2.Macro/Microarchitectural Patterns

* The key idea behind patterns

CamE o] apEol 5 Eo|H)i Be BA % o
@ T2, pattern®] H2 2 0|1 dAAFH O &

o] ¥+ A Al 4 9 solution®] Uh.

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.2.Macro/Microarchitectural Patterns
o M2, 7N 2] DA of W}t B/ 5 = patterne] A 7HA] &

* 1. Architectural style
* 2. Design patterns

¢ 3. Coding idioms

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.2.Macro/Microarchitectural Patterns

* Architectural style
- Macroachitectural Patterns
- “a set of constraint on an architecture [that] define a
set or family of architectures that satisfy them”

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.2.Macro/Microarchitectural Patterns

* Architectural style

- g &Fst A zF=o] 4 o) st 2 7}X] major architectural style
» General structure(ex. layers, pipes and filters, blackboard)
» Distributed system(ex. client-server, three-tiers, broker)
» Interactive system(ex. model-view-controller)

» Adaptable system(ex. Microkernel, reection)

» Other style(ex. Batch, interpreters, process control)

3. SOFTWARE STRUCTURE AND ARCH
3.2.Macro/Microarchitectural Patterns

ITECTURE

* Design Patterns
- Microachitectural Patterns
- the high-level organization of software system

~3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.2.Macro/Microarchitectural Patterns

* Design Patterns
- Gamma et al.

» Creational patterns(ex. Builder, factory,
prototype)

» Structural patterns(ex. Adapter, bridge,
composite)

» behavioral patterns(ex. Command, interpreter,
iterator)

~3. SOFTWARE STRUCTURE AND ARCHITECTU

E
3.2.Macro/Microarchitectural Patterns

* Design Patterns
- Buschmann et al.

P Structural decomposition patterns
P Organization of work patterns

P Access control patterns

» Management patterns

» Communication patterns

3. SOFTWARE STRUCTURE AND ARCHITECTURE

3.3 Design of Families of Systems and Frameworks

» Resent approaches toward that goal of software
design based on software product lines and
software components.

* Software production line : A collection of systems

sharing a managed set of features constructed
from a common set of core software asset

4. SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION

* Software Quality:

DEAMAtS LX HEHE =08 KFE B A1) 28 550
ggt= 0l 2ZEHH HNE52 2E S 5=

c @AZEYI @REE SHS XHS D UK BE,
- @M ATE0 I O BE &
|

e WM AIE Sl AZEY I D249

Sl dS s el ~EEO] Hlet A

* Properties of Software Quality
e Functionality
e Usability
e Efficiency
e Maintainability
e portability

“SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION
4.1 Design Quality Attributes

* Run-time qualities
-ex) functionality, usability, performance

* Development-time qualities
-ex) integrability, modifiablility, portability

IZI[SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION

4.2 Measures (quantitative estimates)
Aee olahel T A of uwheh B3
» Function-oriented (structured) measures

- structure chart = 3% 3

- ex) fan-in/fanout, cyclomatic complexity

» Objected-oriented measures

- class diagram ©. = 3% &

- ex) weighted method per class, depth of inheritance
tree, number of children

IZI[SOFTWARE DESIGN QUALITY ANALYSIS AND EVALUATION

4.3 Quality Analysis and Evaluation Tools

o & 5= AlFS] o H 2 W Abgshe e V]
e Software design reviews

ex) architecture reviews, design reviews and inspections

e Simulation and prototyping
ex) simulation-based performance or reliablility analysis

Software designh notations and documentation

* Budgen categorization
» Black-box notation :

- design model 2] 2]F 2 4~ °] &4
» White-box notation :

P Structural/Static properties
» Behavioral/dynamic properties

5.1 A selection of Design Notations

* Class and object diagrams

* Component diagrams

* Deployment diagrams

e Structure charts

* Structure (Jackson) diagrams

Software desigh notations and documentation

5.2 Behavioral Descriptions (Dynamic view)
o ANAE NAQAO SN SXS MUFI= 0 AIR

TGy A Yo
e Activity diagrams
e Interaction diagrams : sequence and collaboration
diagrams
e Data flow diagrams
e State transition diagrams and statechart diagrams
e Pseudo code and program design languages (PDLs)

Software Design strategies and methods

6.1 General Strategies and Enabling Techniques
* Abstraction

* Coupling and cohesion

* Divide and conquer

* Information hiding and encapsulation

* Sufficiency, completeness, primitiveness

Software Design strategies and methods
6.2 Function-oriented (Structured) Design

Divide and conquer approach toward identifying major system
function in a top-down approach.

Structured analysis produces DFDs of the various system functions
together with associated process descriptions, that is, descriptions
of the processing performed by each subtask, usually using
informal Pseudocode.

Entity-relationship diagrams describing the data stores can also be
used.

e Key strategies to help derive a software architecture from a DFD
 Transaction analysis: triggers

 Transformation analysis : identifying the central transform,
structure chart

» Key concept of structured design are those of coupling and
cohesion: restrict coupling to normal types: data, stamp, control
coupling. Avoid common and contest coupling

6.3 Object-oriented Design

. El)bj.ect based (no inheritance or polymorphism) Vs object oriented
esign

* OO design (solution domain) Vs requirement analysis (problem
domain)

* (lass diagrams Vs Integration diagrams (sequence or elaboration
diagrams%

Software Design strategies and methods
6.4 Data-structured-oriented Design

* Emphasis is on the data that a program manipulates rather than the
functions it performs

* Motivated by stability in data rather then functions that need to be
performed

» Restricted to the design of data-processing programs using sequential
(batch-style) files and processes

* Jackson System Development (JSD) : approach similar to OOD to
address more complex interacting processes

6.4 Data-structured-oriented Design

. El)bj.ect based (no inheritance or polymorphism) Vs object oriented
esign

* OO design (solution domain) Vs requirement analysis (problem
domain)

* (lass diagrams Vs Integration diagrams (sequence or elaboration
diagrams%

/. CONCLUSION

